Марганец

Применение

Применение Марганца

Основной потребитель Марганец - черная металлургия, расходующая в среднем около 8-9 кг Марганца на 1 т выплавляемой стали. Для введения Марганца в сталь применяют чаще всего его сплавы с железом - ферромарганец (70 - 80% Марганец, 0,5 - 7,0% углерода, остальное железо и примеси). Выплавляют его в доменных и электрических печах.

Марганец необходим в производстве стали, и сегодня ему нет эффективной его замены. С введением марганца в ванну с расплавом, он выполняет несколько функций. При раскислении и рафинировании стали марганец восстанавливает оксиды железа, превращаясь в оксид марганца, который устраняется в виде шлака. Марганец взаимодействует с серой, и образовавшиеся сульфиды также переходят в шлак. Алюминий и кремний, хотя и служат раскислителями наряду с марганцем, не способны выполнять функцию десульфуризации. Введение элемента № 25 вызывает замедление скорости роста зерна при нагреве, что приводит к получению мелкозернистой стали. Известно также, что алюминий и кремний, напротив, ускоряют рост зерен.

Марганец вводят в доменную шахту именно для того, чтобы удалить серу из чугуна. Сродство к сере у марганца больше, чем у железа. Элемент №25 образует с ней прочный легкоплавкий сульфид MnS. Сера, связанная марганцем, переходит в шлак. Этот способ очистки чугуна от серы прост и надежен.

Способность марганца связывать серу, а также ее аналог – кислород широко используется и в производстве стали. Еще в прошлом веке металлурги научились плавить «зеркальный» чугун из марганцовистых железных руд. Этот чугун, содержащий 5...20% марганца и 3,5...5,5% углерода, обладает замечательным свойством: если его добавить к жидкой стали, то из металла удаляются кислород и сера. Изобретатель первого конвертора Г. Бессемер использовал зеркальный чугун для раскисления и науглероживания стали.

Вводить марганец в сталь в процессе плавки можно при использовании ферросплавов. Еще в 19 в. металлурги научились выплавлять зеркальный чугун, содержащий 5–20% марганца и 3,5–5,5% углерода. Пионером в этой области стал английский металлург Генри Бессемер. Зеркальный чугун, подобно чистому марганцу, обладает свойством удалять из расплавленной стали кислород и серу. В те времена зеркальный чугун получали в доменной печи путем восстановления содержащих марганец шпатовых железняков, ввозимых из Рейнской Пруссии – из Штальберга.

Применение Марганца

Бессемер приветствовал дальнейшее развитие производства марганцевых сплавов, и под его руководством Гендерсон организовал в 1863 на заводе Феникс в Глазго производство ферромарганца – сплава, содержащего 25–35% марганца. Ферромарганец обладал преимуществами перед зеркальным чугуном при производстве стали, так как придавал ей большую вязкость и пластичность. Наиболее экономически выгодный способ производства ферромарганца – выплавка в доменной печи.

Несмотря на то, что получение ферромарганца Гендерсоном было технически прогрессивным процессом, этот сплав долгое время не находил применения из-за трудностей, возникающих при выплавке. Промышленная выплавка ферромарганца в России началась в 1876 в доменных печах Нижне-Тагильского завода. Русский металлург А.П.Аносов еще в 1841 в своем труде О булатах описал добавление ферромарганца в сталь. Кроме ферромарганца в металлургии широкое применение находит силикомарганец (15–20% Mn, около 10% Si и меньше 5% С).

Марганец обычно вводят в сталь вместо с другими элементами – хромом, кремнием, вольфрамом. Однако есть сталь, в состав которой, кроме железа, марганца и углерода, ничего не входит. Это так называемая сталь Гадфилда. Она содержит 1...1,5% углерода и 11...15% марганца. Сталь этой марки обладает огромной износостойкостью и твердостью. Ее применяют для изготовления дробилок, которые перемалывают самые твердые породы, деталей экскаваторов и бульдозеров. Твердость этой стали такова, что она не поддается механической обработке, детали из нее можно только отливать.

В 1878 девятнадцатилетний шеффилдский металлург Роберт Гадфилд приступил к изучению сплавов железа с другими металлами и в 1882 выплавил сталь с 12%-ым содержанием марганца. В 1883 Гадфилду был выдан первый британский патент на марганцовистую сталь. Оказалось, что закалка стали Гадфилда в воде придает ей такие замечательные свойства, как износостойкость и увеличение твердости при длительном действии нагрузок. Эти свойства сразу нашли применение при изготовлении железнодорожных рельсов, гусениц тракторов, сейфов, замков и многих других изделий.

В технике широко применяются тройные сплавы марганец-медь-никель – манганины. Они обладают большим электрическим сопротивлением, не зависящим от температуры, но зависящим от давления. Поэтому манганины используются при изготовлении электрических манометров. Действительно, обычным манометром нельзя измерить давление в 10 тыс. атмосфер, это можно сделать электрическим манометром, заранее зная зависимость сопротивления манганина от давления.

Интересны сплавы марганца с медью (особенно 70% Mn и 30% Cu), они могут поглощать энергию колебаний, это находит применение там, где необходимо уменьшить вредные производственные шумы.

Как показал Гейслер в 1898, марганец образует сплавы с некоторыми металлами, например с алюминием, сурьмой, оловом, медью, отличающиеся способностью намагничиваться, хотя они и не содержат ферромагнитных компонентов. Это свойство связано с наличием в таких сплавах интерметаллических соединений. По имени первооткрывателя подобные материалы называются сплавами Гейслера.

Основной потребитель марганцевой руды - ферросплавные заводы. Здесь в результате различных технологических процессов получают сплавы марганца (с железом, кремнием) или металл в чистом виде. Дальше путь марганца лежит в сталеплавильный цех.

В медицине некоторые соли Марганца (например, KMnO4) применяют как дезинфицирующие средства.